МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «БРЯНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

КАФЕДРА МЕХАНИКИ И ОСНОВ КОНСТРУИРОВАНИЯ

К ОПРЕДЕЛЕНИЮ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА ПОЧВЕННЫХ ОБРАЗЦОВ НЕНАРУШЕННОЙ СТРУКТУРЫ

Методические указания к факультативным занятиям по дисциплине «Механика грунтов, основания, фундаменты» по направлению подготовки 190100 - Наземные транспортно-технологические комплексы (квалификация «бакалавр»)

УДК 631.312 ББК 3442 С 77

Старовойтов, С.И. К определению модуля упругости первого рода почвенных образцы ненарушенной структуры/ Методические указания к факультативным занятиям по дисциплине «Механика грунтов, основания и фундаменты»/ С.И. Старовойтов, В.Н. Блохин, Н.Н. Чемисов. - Брянск: Издательство Брянской Γ CXA, 2012. – 16 с.

В работе рассматриваются основные этапы вывода выражения для определения модуля упругости первого рода при условии колебания почвенного образца ненарушенной структуры.

Рецензент: старший преподаватель кафедры информатики Панкова Е.А.

Рекомендовано к изданию на заседании кафедры механики и основ конструирования. Протокол №6 от 15.02.2012.

[©] Брянская ГСХА, 2012

[©] Старовойтов С.И., 2012

[©] Блохин В.Н., 2012

[©] Чемисов Н.Н., 2012

Введение

В почве, различной по гранулометрическому составу и влажности, наблюдается специфическая зависимость напряжений и деформаций, которая может быть представлена реологической моделью.

Известны модели Гука, Ньютона, Максвелла, Фойгта, Пойтинга-Томсона, Барджерса. В тоже время, при динамическом нагружении, почва ведет себя как малосжимаемое и условно упругое тело, характеризуемое модулем упругости 1 рода E и коэффициентом Пуассона μ .

Модули упругости характеризуют жесткость материала и являются весьма важными расчетными величинами. Модуль упругости при растяжении и сжатии, а также при статическом изгибе называется модулем I рода, а при скалывании и кручении — модулем II рода (модуль сдвига).

Ввиду сравнительной сложности определения, требующего весьма точных приборов для измерения деформаций и связанного с большой затратой времени, модули упругости для почвы изучены слабо и экспериментальных данных имеется немного, причем эти данные вследствие различия в методах определения не всегда сопоставимы.

Известна методика определения E и μ в условиях динамического нагружения малой интенсивности. Методика определения модуля упругости первого рода основывается на анализе колебаний почвенного образца ненарушенной структуры при динамическом воздействии малой интенсивности.

1. Исходные данные. Постановка задачи

Зарисуем почвенный образец (рис. 1), который был сжат продольной силой $^{\mathsf{S}}$, приложенной к верхнему свободному краю.

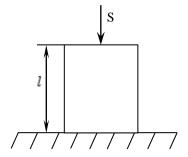


Рисунок 1-Сжатие образца продольной силой

В момент времени t = 0 верхний свободный конец внезапно освобожден. Необходимо определить закон колебаний сечений стержня. К исходным данным относятся: u — продольное перемещение произвольно взятого поперечного сечения стержня при колебаниях (м); ε — относительное укорочение стержня в момент приложения продольной силы S (безразмерная величина); E — модуль упругости первого рода (H/M^2); A — площадь поперечного сечения стержня (M^2); M — продольная сжимающая сила (M^2); M — вес единицы объема стержня (M/M^3); M/M^2 — длина стержня (M/M^3).

Используемые допущения: материал однороден, изотропен и следует закону Гука; сечения при колебаниях образца остаются плоскими; частицы, лежащие в этих сечениях, совершают движения только в направлении оси почвенного образца; вес выделенного фрагмента не учитывают.

2.Дифференциальное уравнения движения элемента образца

Зарисуем следующую схему (рис.2).

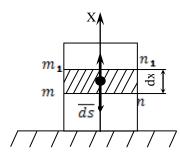


Рисунок 2- Воздействие сил на элемент

$$\sum F_x=0.$$

Составим следующее уравнение равновесия:

где сила инерции выделенного элемента;

ds — часть сжимающей силы, приходящей на элемент стержня $mnm_1 n_1$. Расстояние между сечениями dx.

Сжимающая сила

$$S = R \cdot E \cdot \varepsilon$$
.

Относительное укорочение стержня

$$\varepsilon = \frac{\partial u}{\partial x}.$$

Сжимающая сила

$$S = R \cdot E \cdot \frac{\partial u}{\partial x}.$$

Продифференцируем последнее выражение. Тем самым, определим часть сжимающей силы S , приходящей на элемент стержня $mnm_1\ n_1$.

$$\frac{ds}{dx} = \left(R \cdot E \cdot \frac{\partial u}{\partial x}\right)' = R \cdot E \cdot \frac{\partial^2 u}{\partial x^2}.$$

Растягивающая сила выделенного элемента

$$\overline{ds} = R \cdot E \cdot \frac{\partial^2 u}{\partial x^2} \cdot dx.$$

Сила инерции выделенного элемента где \overline{a} — ускорение выделенного элемента.

Ускорение выделенного элемента можно представить следующим образом

$$\overline{a} = \frac{\partial^2 u}{\partial t^2}.$$

Объем выделенного элемента

$$V = R \times dx$$

Вес выделенного элемента

$$P = V \times \gamma$$
.

Масса выделенного элемента

$$m=\frac{P}{g}$$
.

Или же

$$m = \frac{R \cdot dx \cdot \gamma}{g}.$$

Сила инерции выделенного элемента

Подставляя в выражение полученные составляющие, получаем следующее выражение

$$\begin{split} \frac{R \cdot dx \cdot \gamma}{g} \cdot \frac{\partial^2 u}{\partial t^2} - R \cdot E \cdot \frac{\partial^2 u}{\partial x^2} \cdot dx &= 0. \\ \frac{R \cdot dx \cdot \gamma}{g} \cdot \frac{\partial^2 u}{\partial t^2} &= R \cdot E \cdot \frac{\partial^2 u}{\partial x^2} \cdot dx. \\ \frac{\gamma}{g} \cdot \frac{\partial^2 u}{\partial t^2} &= E \cdot \frac{\partial^2 u}{\partial x^2}. \\ \frac{\partial^2 u}{\partial t^2} &= \frac{E \cdot g}{\gamma} \cdot \frac{\partial^2 u}{\partial x^2}. \end{split}$$

Преобразуем последнее выражение с использованием следующей подстановки

$$a^2 = \frac{E \cdot g}{\gamma}.$$

Тогда дифференциальное уравнение движения элемента будет иметь следующий вид

$$\frac{\partial^2 u}{\partial t^2} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}.$$

3. Решение дифференциального уравнения

Решение дифференциального уравнения $\frac{\partial^2 u}{\partial t^2} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}$ следует искать в виде выражения

$$u = X \cdot (A \cdot cospt + B \cdot sinpt),$$

где A, B — постоянные величины, зависящие от условий нагружения стержня;

X — некотороя функция только координаты X , определяющая форму рассматриваемых колебаний.

Тогда

$$\frac{\partial u}{\partial t} = X \cdot (-A \cdot p \cdot sinpt + B \cdot p \cdot cospt);$$

$$\frac{\partial^2 u}{\partial t^2} = X \cdot (-A \cdot p^2 \cdot cospt - B \cdot p^2 \cdot sinpt).$$

Или же

$$\frac{\partial^2 u}{\partial t^2} = -X \cdot p^2 \cdot (A \cdot cospt + B \cdot sinpt)$$

$$\frac{\partial u}{\partial x} = \frac{dX}{dx} \cdot (A \cdot cospt + B \cdot sinpt);$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{d^2 X}{dx^2} \cdot (A \cdot cospt + B \cdot sinpt).$$

Тогда на основании уравнения
$$\frac{\partial^2 u}{\partial t^2} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}$$
, имеем

$$-Xp^2 \cdot (Acospt + Bsinpt) = a^2 \cdot \frac{d^2X}{dx^2} \cdot (Acospt + Bsinpt).$$

Далее

$$-X \cdot p^2 = a^2 \cdot \frac{d^2X}{dx^2}.$$

$$0 = a^2 \cdot \frac{d^2X}{dx^2} \cdot Xp^2;$$

Или же

$$a^2 \cdot \frac{d^2X}{dx^2} + Xp^2 = 0.$$

Для решения данного уравнения используем подстановку Эйлера.

$$X = e^{kt}.$$

$$X' = k \cdot e^{kt}.$$

$$X'' = k^{\dagger} 2 \cdot e^{\dagger} kt.$$

Тогда

$$a^{2}k^{2}e^{kt} + e^{kt}p^{2} = 0.$$

$$k^{2}e^{kt} + e^{kt} \cdot \frac{p^{2}}{a^{2}} = 0.$$

$$e^{kt} \cdot \left(k^{2} + \frac{p^{2}}{a^{2}}\right) = 0.$$

$$e^{kt} \neq 0$$

Тогда имеем следующее квадратное уравнение

$$k^2 + \frac{p^2}{a^2} = 0.$$

В данном квадратном уравнении

$$A = 1; B = 0; C = \frac{p^2}{a^2}.$$

Дискриминант данного квадратного уравнения

$$D = B^2 - 4AC = -\frac{4p^2}{a^2}.$$

Дискриминант меньше нуля. Если дискриминант меньше нуля, то общее решение уравнения можно представить как

$$X = e^{ax} \cdot (C \cdot cosbx + D \cdot sinbx).$$

Так как

$$k = a \pm bi, a = 0, k_{1,2} = \pm \frac{p}{a} \cdot i$$

то получим

$$X = C \cdot \cos\left(\frac{px}{a}\right) + D \cdot \sin\left(\frac{px}{a}\right).$$

4. Определения Е с учетом начальных условий

Если на верхнем свободном конце почвенного образца размещаем груз (рис.3), то имеем следующие концевые условия.

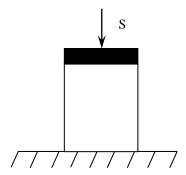


Рисунок 3-Размещение груза на свободном конце почвенного образца $\{u\}_{v=0} = 0$;

$$A \cdot E \cdot \left(\frac{\partial u}{\partial x}\right)_{x=1} = -\frac{Q}{g} \cdot \left(\frac{\partial^2 u}{\partial t^2}\right)_{x=1},$$

где Q- величина груза, размещенного на почвенном образце.

Чтобы удовлетворить первому из этих условий **[(**u**)** $_{x=0}=0$ **].** примем в выражении

$$X = C \cdot \cos\left(\frac{px}{a}\right) + D \cdot \sin\left(\frac{px}{a}\right)$$

произвольную постоянную C = 0. Тогда получим

$$X = D \cdot \frac{\sin px}{a}$$
.

При известном выражении

$$u=X\cdot extbf{(}Acospt+Bsinpt extbf{)} extbf{,}$$
 $u=rac{\sin px}{a} extbf{(}Acospt+Bsinpt extbf{)} extbf{.}$ получим

Рассмотрим обстоятельства удовлетворения первому условию. При x=0; $\frac{px}{c}=0$; sin0=0; $(u)_{x=0}=0$.

Рассмотрим условия удовлетворения второму условию. Запишем опять следующие выражения

$$u = X \cdot (A \cdot cospt + B \cdot sinpt);$$

$$X = C \cdot cos(\frac{px}{a}) + D \cdot sin(\frac{px}{a}).$$

$$\frac{\cos px}{a} = 0.$$

В последнем выражении примем $\frac{\cos px}{a} = 0$.

$$X = D \cdot \frac{\sin px}{a}$$
. Получим $u = \frac{\sin px}{a}$ (A · cospt + B · sinpt).

Тогда

$$\frac{\partial u}{\partial x} = \frac{p}{a} \cos px$$

$$(A \cdot cospt + B \cdot sinpt);$$

$$\left(\frac{\partial u}{\partial x}\right)_{x=l} = \frac{p}{a} \cdot \frac{\cos pl}{a} (A \cdot cospt + B \cdot sinpt);$$

$$R \cdot E \left(\frac{\partial u}{\partial x} \right)_{x=l} = R \cdot E \cdot \frac{p}{a} \cdot \frac{\cos pl}{a} (A \cdot cospt + B \cdot sinpt).$$

Еще раз перепишем выражение $u = \frac{\sin px}{a}$ (A · cospt + B · sinpt).

$$\frac{\partial u}{\partial t} = \frac{\sin px}{a} (-A \cdot p \cdot sinpt + B \cdot p \cdot cospt);$$

Преобразуем полученное выражение.

$$\begin{aligned} R \cdot E \cdot \frac{\cos pl}{a} &= \frac{Qap}{g} \cdot \frac{\sin pl}{a}. \\ R \cdot E &= \frac{Qap}{g} \cdot tg \frac{pl}{a}. \end{aligned}$$

Умножим обе части выражения на *l*.

$$l \cdot R \cdot E = \frac{lQap}{g} \cdot tg \frac{pl}{a}.$$

Умножим обе части на д.

$$glRE = lQapg \frac{pl}{a}$$
.

Разделим обе части на
$$Q$$
.
$$\frac{lREg}{Q} = platg\left(\frac{pl}{a}\right).$$

Разделим обе части на a^2 .

$$\frac{lREg}{Qa^2} = \frac{pl}{a}tg\left(\frac{pl}{a}\right).$$

Введем следующую подстановку

$$\frac{pl}{a} = \beta_1.$$

$$\frac{lREg}{Oa^2} = \beta_1 tg(\beta_1).$$

Тогда

 $a^2 = \frac{Eg}{\gamma}$, то получим

$$\frac{lREg\gamma}{QEg} = \beta_1 tg(\beta_1).$$

$$\frac{lA\gamma}{Q}=\beta_{1}tg(\beta_{1}).$$

Примем, то что $\beta_{\mathbf{1}}=tg(\beta_{\mathbf{1}})$. Далее, из выражения $\beta_{\mathbf{1}}=\frac{pl}{a}$.

имеем
$$eta_1^2=rac{p^2l^2}{a^2}$$
. Введем подстановку $K=rac{lA\gamma}{Q}$. Так как $a^2=rac{Eg}{\gamma}$, то получим

$$K=\frac{P^2l^2\gamma}{Eg};\ _{KEg=\,P^2l^2\gamma;}\ E=\frac{P^2l^2\gamma}{Kg}.$$

Циклическая частота

$$P = 2\pi f$$

где f — техническая частота, измеряемая в герцах (определяется в результате эксперимента).

Таким образом, выражение модуля упругости первого рода

$$E = \frac{4\pi^2 f^2 l^2}{Kg}.$$

Литература

- 1. Кушнарев А.С. К методике определения модулей упругости и сдвига почвы. /Сборник научных трудов молодых ученых Мелитопольского института механизации сельского хозяйства.-Мелитополь:1968 г.-С. 3.
- 2. Тимошенко С.П.Колебания в инженерном деле.-М.: Государственное издательство физико-механической литературы, 1959.- 288 с.

No	Содержание	Стр
1/П		
1.	Исходные данные. Постановка задачи	4
2.	Дифференциальное уравнение движения элемента образца	4
3.	Решение дифференциального уравнения	7
4.	Определение Е с учетом начальных условий	10

Учебное издание

Старовойтов Сергей Иванович Блохин Валерий Николаевич Чемисов Николай Николаевич

К ОПРЕДЕЛЕНИЮ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА ПОЧВЕННЫХ ОБРАЗЦОВ НЕНАРУШЕННОЙ СТРУКТУРЫ

Редактор Павлютина И.П.

Подписано к печати 15. 03. 2012 г. Формат 60× 84 1/24 Бумага Печатная. Усл.п.л. 0,87. Тираж 50. Изд. № .2143.

Издательство Брянской государственной сельскохозяйственной академии 243365 Брянская обл., Выгоничский р-он, с. Кокино, Брянская ГСХА министерство сельского хозяйства российской федерации

ФГБОУ ВПО «БРЯНСКАЯ ГОСУДАРСТВ

ЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

КАФЕДРА МЕХАНИКИ И ОСНОВ КОНСТРУИРОВАНИЯ

РАСЧЕТ ПЛОСКОНАПРЯЖЕННОЙ ПЛАСТИНЫ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Методические указания к факультативным занятиям по дисциплине «Сопротивление материалов»

Брянск 2012

УДК 624.074:624.046 ББК 34.41 С 77

Старовойтов, С.И. Расчет плосконапряженной пластины методом конечных элементов/ Методические указания к факультативным занятиям по дисциплине «Сопротивление материалов»/ С.И. Старовойтов, В.Н. Блохин, А.П. Карпович, Н.Н. Чемисов. - Брянск: Издательство Брянской ГСХА, 2012. $-40~\rm c$.

Методические указания разработаны по направлению подготовки 110800 Агроинженерия (квалификация «бакалавр») по дисциплине «Сопротивление материалов». В работе рассматриваются основные этапы определения напряженного состояния элементарных составляющих плосконапряженной платины.

Рецензенты:

к.т.н., доцент, заведующий кафедрой «Информатики» Безик Д.А. к.т.н., доцент кафедры «Механики и основ конструирования» Романеев Н.А.

Рекомендовано к изданию методической комиссией инженернотехнологического факультета. Протокол Ne6 от 15.02.2012.

- © Брянская ГСХА, 2012
- © Старовойтов С.И., 2012
- © Блохин В.Н., 2012
- © Карпович А.П., 2012
- © Чемисов Н.Н., 2012

Учебное издание

Старовойтов Сергей Иванович Блохин Валерий Николаевич Карпович Анатолий Петрович Чемисов Николай Николаевич

РАСЧЕТ ПЛОСКОНАПРЯЖЕННОЙ ПЛАСТИНЫ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Редактор Павлютина И.П.

Подписано к печати .23 03. 2012 г. Формат 60**×** 84 1/24 Бумага Печатная. Усл.п.л. 2,32. Тираж 50. Изд. № .2149.

Издательство Брянской государственной сельскохозяйственной академии 243365 Брянская обл., Выгоничский p-он, с. Кокино, Брянская ГСХА